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Multiobjective optimization

Real-life problems often consist of multiple conflicting objectives.

These problems have many compromise, non-comparable solutions with various trade-offs.

A domain expert, known as the decision maker, is needed to find the best solution.

The decision maker can provide preferences, which are used to find the best solution.
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Multiobjective optimization

Multiobjective optimization methods support the decision maker in finding the best
solution.

The solution is then used in real-life decision-making.

Often decision makers lack support in providing preferences.

Can the decison maker trust the solution found? Can the solution be justified in any way?
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Explainability and multiobjective optimization

Could we make multiobjective optimization methods explainable?

Idea: borrow exisiting techniques from explainable artificial intelligence (XAI).

We will explore a new paradigm: explainable (interactive) multiobjectice optimization.
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Explainable multiobjective optimization

XAI

Multiobjective
optimization

Explainable
multiobjective
optimization

Figure: The main theme of this presentation and the main theme of my PhD.
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Multiobjective optimization problems

A multiobjective optimization problem has many conflicting objectives, which are to be
optimized simultaneously1.

Multiobjective optimization problem

A multiobjective optimization problem can be defined as

minF (x) = (f1(x), f2(x), . . . , fk(x)), (1)

where f1 . . . fi , i ∈ [1, k] are objective functions and x is a decision variable vector. The vectors
x can be subject to both box-constraints and function constraints. Feasible x belong to the
feasible variable space S or x ∈ S .

1Kaisa Miettinen. Nonlinear multiobjective optimization. Boston: Kluwer Academic Publishers, 1999.
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Box-constraints

x lowi <= xi <= xhighi , xi ∈ x (2)

Function constraints

g(x)− δg > 0

h(x)− δh = 0

δg , δh ∈ R

(3)

In (2) x lowi and xhighi are the lower and higher limits for the ith element in x, respectively.

In (3) δg and δh are scalar values which should be exceeded or be exactly matched by
g(x) and h(x), respectively.
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More definitions

Pareto optimality

A solution x∗ ∈ S is said to be Pareto optimal if, and only if, there does not exist any other
solution x ∈ S such that fi (x) ≤ fi (x

∗)∀i ∈ [1, k] and fi (x) < fi (x
∗) for at least some i ∈ [1, k].

Objective vector

An objective vector z is the image of the solution x ∈ S such that F (x) = z. The set of
objective vectors Z consists of all the images z.

Pareto front

The Pareto front ZPareto consists of the images of all the Pareto optimal solutions. The set of
Pareto optimal solutions is the Pareto optimal solution set.

Giovanni Misitano (JYU) R-XIMO 11



More definitions

Ideal and nadir points

The ideal z∗ and nadir znad points represent the best (lowest) and worst (highest) values of
the objective function values on the Pareto front, respectively.

Reference point

A reference point z̄ is a vector of aspiration levels z̄i , i = 1...k . The reference point can be
provided by a decisision maker, in which case, the reference point represents the decision
maker’s preferences.
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Important concepts graphically
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Scalarization

Multiobjective optimization problems can be scalarized using a scalarizing function
s : Rk → R.

Scalarized problem

min s(F(x);p)

subject to x ∈ S ,
(4)

where p is a set of additional parameters given to the scalarizing function .

Scalarizing functions usually have some desiderable properties, such as guaranteeing
(weak) Pareto optimality of the solution found.
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Scalarization

Scalarizing function used in STOM2:

STOM

STOM(F; z̄, z∗∗) = min
x∈S

max
i=1,...,k

[
fi (x)− z∗∗i
z̄i − z∗∗i

]
+ ρ

k∑
i=1

fi (x)

z̄i − z∗∗i
, (5)

where z∗∗ = (z∗1 − δ, z∗2 − δ, . . . , z∗k − δ) is an utopian point with δ ∈ R+, and ρ ∈ R+.

A reference point z̄ can be incorporated in scalarizing functions.

More examples of scalarizing functions in3.

2Hirotaka Nakayama. “Aspiration Level Approach to Interactive Multi-Objective Programming and Its Applications”. In: Advances in Multicriteria Analysis.
Ed. by Panos M. Pardalos, Yannis Siskos, and Constantin Zopounidis. Boston, MA: Springer, 1995, pp. 147–174. isbn: 978-1-4757-2383-0. doi:
10.1007/978-1-4757-2383-0\_10.

3Kaisa Miettinen and Marko M. Mäkelä. “On scalarizing functions in multiobjective optimization”. In: OR Spectrum 24.2 (2002), pp. 193–213. doi:
10.1007/s00291-001-0092-9.
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Interactive method

A decision maker (DM) iteratively provides preference information as a reference point.

New solution(s) are computed for the problem after each iteration.

We focus on reference point based interactive methods.

Preferences Interac�ve
method

Solu�ons

DM
The decision maker provides

preferences
The interac�ve method

returns solu�ons
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Shapley values and SHAP

Shapley values4 is a game-theoretical concept.

Shapley values are a way to quantify the contribution of each player to the payoff in an
n-player game.

4Lloyd S Shapley. 17. A value for n-person games. Santa Monica: RAND Corporation, 1951.

Giovanni Misitano (JYU) R-XIMO 17



Shapley values and SHAP

Shapley values have been used in the field of explainable artificial intelligence5 to
explain black-box machine learning models.

Because of the nature how Shapley values are computed (remove player from game,
compute partial payoff) makes them hard to be used with arbitrary machine learning
models.

Instead, we may rely on SHAP values6, particularly kernel SHAP, which are
computationally less expensive to compute than pure Shapley values.

5David Gunning et al. “XAI–Explainable artificial intelligence”. In: Science Robotics 4.37 (2019). doi: 10.1126/scirobotics.aay7120.
6Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predictions”. In: Advances in Neural Information Processing Systems 30.

Ed. by I. Guyon et al. California: Curran Associates, Inc., 2017, pp. 4765–4774.
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So?

? ? ???

“I am very confused Giovanni, what are you getting at?”
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Explainable interactive multiobjective optimization

Could we somehow utilize SHAP values to probe interactive multiobjective optimization
methods and get insight on how the preferences provided (the reference point) has

affected the computes solution(s)?
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Explainable interactive multiobjective optimization

YES!
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Explainable interactive multiobjective optimization

A new method, R-XIMO, that can provide explanations on how reference points have
affected computed solutions.

From the explanations, we can derive suggestions.

Suggestions to support the decision maker in providing new preferences in the next
iteration.

R-XIMO can be used with any multiobjective optimization method that takes as its input
a reference point and computes a solution.

Giovanni Misitano (JYU) R-XIMO 23



Explainable interactive multiobjective optimization

A decision maker can express a wish to improve some objective function in a solution.

A suggestion on how to modify the current reference point to achieve the desired
improvement is provided.

E.g., the decision maker wishes to improve objective 1, R-XIMO suggest that the decision
maker should improve objective 1 in the reference point and impair objective 3.

We know this by computing SHAP values.

Giovanni Misitano (JYU) R-XIMO 24



Explainable interactive multiobjective optimization
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Explainable interactive multiobjective optimization

Decision maker: I would like to improve the first objective.

Example explanation:

Objective 1 was most improved in the solution by the second component and most impaired
by the third component in the reference point.

Example suggestion:

Try improving the first7 component and impairing the third component in the reference point.

7We always improve the component that matches the objective the decision maker wishes to improve.
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Numerical experiment

We utilized three reference point based interactive methods that consisted of minimizing
different scalarizing functions (5).

We tested R-XIMO with two real-life multiobjective optimization problems (3 and 5
objectives).

Check what happens if we follow the suggestion provided by R-XIMO fully, partly, or not at
all, and see if we were successful in improving the desired objective and how much it
improved.
We did the above many times and got statistical data.
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Results of numerical experiment

Some key finding based on the numerical tests:

It is best to follow the suggestion provided by R-XIMO.

Even only partly following the suggestion had some value.

R-XIMO seems to work just as well for different scalarizing functions.
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Case study

Piloted the suggestions and explanations generated by R-XIMO with a human decision
maker.

Problem in Finnish forest management with three objectives.

The decision maker was a domain expert in the field of forest management.

The decision maker solved the problem twice.
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Case study results

The suggestions were found to be useful by our human decision maker in the case study.

The decision maker thought that R-XIMO supported them in reaching a satisfying
solution in less iterations than without.

However, the acutal explanations where too complicated and the decision maker did not
want to read them.
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Paper!

We have a paper conditionally accepted for publication in a special issue on multi-objective
decision making in Autonomous Agents and Multi-Agent Systems.8 Our paper is titled:

“R-XIMO: Towards Explainable Interactive
Multiobjective Optimizaton”

8https://www.springer.com/journal/10458/updates/18060632
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What next?

With our work, we have taken an important step towards a new paradigm in (interactive)
multiobjective optimization: Explainable Interactive Multiobjective optimization or
XIMO.

Took inspiration from what has been done in the field of explainable artificial intelligence

Novel approaches tailored especially to multiobjective optimization probably needed.
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Honorable mentions

Explainability in multiobjective optimization is still very much in its incubation stage, but
cracks in the shell have appeared outside our current work as well, especially in the
context of evolutionary multiobjective optimization910111213.

9Jinkun Wang et al. “Diversified recommendation incorporating item content information based on MOEA/D”. In: 2016 49th Hawaii international conference
on system sciences (HICSS). IEEE. 2016, pp. 688–696. doi: 10.1109/HICSS.2016.91.

10Roykrong Sukkerd, Reid Simmons, and David Garlan. “Toward explainable multi-objective probabilistic planning”. In: 2018 IEEE/ACM 4th International
Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). IEEE. 2018, pp. 19–25. doi: 10.1145/3196478.3196488.

11Huixin Zhan and Yongcan Cao. “Relationship Explainable Multi-objective Optimization Via Vector Value Function Based Reinforcement Learning”. In: arXiv
preprint arXiv:1910.01919 (2019).

12Giovanni Misitano. “Interactively Learning the Preferences of a Decision Maker in Multi-objective Optimization Utilizing Belief-rules”. In: 2020 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE. 2020, pp. 133–140. doi: 10.1109/SSCI47803.2020.9308316.

13Salvatore Corrente et al. “Explainable Interactive Evolutionary Multiobjective Optimization”. In: Available at SSRN 3792994 (2021).
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Conclusions

Explainability is an exciting and important concept to be studied in the context of and
applied to multiobjective optimization.

Makes life of decision makers easier.

Very much an unexplored area still in the field of multiobjective optimization.

New and wild ideas are needed!
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Links and resources

DESDEO framework12

Multiobjective Optimization (research)
Group3

Follow me on LinkedIn4

1https://desdeo.it.jyu.fi

2G. Misitano et al. “DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization”. In: IEEE Access 9 (2021),
pp. 148277–148295. doi: 10.1109/ACCESS.2021.3123825

3http://www.mit.jyu.fi/optgroup/

4https://linkedin.com/in/misitano
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