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LS MCDM

We say that we deal with an LS instance of MO when MO is not
able to compute enough Pareto optimal solutions within the

resource (time, computing power) budget for the respective MCDM
to identify the most preferred decision variant (a solution to MO).

Here we present three approaches that can be applied to avoid such
frustrating failures.
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Approach I - Granular computing
Granular computing is an emerging computing paradigm of

information processing that concerns the processing of complex
information entities called ”information granules”, which arise in
the process of data abstraction and derivation of knowledge from
information or data. Generally speaking, information granules are

collections of entities that usually originate at the numeric level and
are arranged together due to their similarity, functional or physical

adjacency, indistinguishability, coherency, or the like.
At present, granular computing is more a theoretical perspective

than a coherent set of methods or principles. As a theoretical
perspective, it encourages an approach to data that recognizes and
exploits the knowledge present in data at various levels of resolution
or scales. In this sense, it encompasses all methods which provide
flexibility and adaptability in the resolution at which knowledge or

information is extracted and represented.

Source:Wikipedia
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Granular computing in MO −→ lower and upper
bounds on criteria

All fl(x), l = 1, . . . , k , to be maximized.

minx∈X0 maxl λl((y∗l − fl(x)) + ρek(y∗ − f (x)))

λl > 0, y∗l > fl(x) for any x ∈ X0, l = 1, . . . , k , ρ > 0 and ”small”.

It depends on λ which x is derived.

Given λ, x(λ) is the implicit solution.
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Granular computing in MO =⇒ lower and upper
bounds on criteria values of implicit solutions

Source: Miroforidis, J. (2021), Bounds on efficient outcomes for large-scale
cardinality-constrained Markowitz problems. Journal of Global Optimization, 80,
617–634.
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Mean-variance portfolio selection problem with the
portfolio cardinality constraint

f1(x) := −xTQx ⇒ max (negative variance)

f2(x) := rT x ⇒ max (expected return)

x ∈ X0 = {x | x ≥ 0,
∑n

t=1 xt = 1, card(x) ≤ C},

where

Q : n × n matrix of instrument covariance,

r : vector of instrument expected returns,

C : an integer.
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Mean-variance portfolio selection problem with the
portfolio cardinality constraint

Data from the New York Stock Exchange were collected for 600
companies, for the period from July 2001 until June 2018, with no

missing quotes. The data set in the format analogous to the
Beasley problems from OR Library is available at:

http://www.ibspan.waw.pl/ kaliszew/
JKMP portfolio problems/JKMP 600/JKMP 600.txt.

More problems, up to 1000 instruments, at:

https://repod.icm.edu.pl/dataset.xhtml?persistentId

=doi:10.18150/CZYLOV

Software: Gurobi 8.1.1 for Windows 10 (x64).
Platform: CPU Intel Core i7-7700HQ, 16 GB RAM.
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Mean-variance portfolio selection problem with the
portfolio cardinality constraint

Source: Miroforidis, J. (2021), Bounds on . . . .
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Mean-variance portfolio selection problem with the
portfolio cardinality constraint

Source: Miroforidis, J. (2021), Bounds on . . . .
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Mean-variance portfolio selection problem with the
portfolio cardinality constraint

Total computing time: 4200 sec.
Gurobi did not provided optimal solution in 7500 sec. (MIP GAP%

= 5.78% is an useless information in the MO context).
−0.0001686 ≤ f1(x(λ)) ≤ −0.0001112,

0.0008468 ≤ f2(x(λ)) ≤ 0.0034285.
Source: Miroforidis, J. (2021), Bounds on . . . .
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Granular computing in MO −→ lower and upper
bounds on criteria
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Granular computing in MO −→ lower and upper
bounds on criteria
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Approach II – Abolish the Dogmas

Dogma 1: Mean-variance portfolio selection problem with the
portfolio cardinality constraint (MVCC) is a hard quadratic
programming problem.

Dogma 2: Research in quadratic programming to provide more
effective solving methods is highly motivated by needs of the
financial industry.
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A Rudimentary Approximation of Pareto optimal
portfolios in MVCC problem

MVCC:

f1(x) := −xTQx ⇒ max (negative variance)

f2(x) := rT x ⇒ max (expected return)

x ∈ X0 = {x | x ≥ 0,
∑n

i=1 xi = 1, card(x) ≤ C},

αx i + (1 − α)x j = x , 0 ≤ α ≤ 1,

If
∑n

t=1 x
i
t = 1 and

∑n
t=1 x

j
i = 1, then

∑n
t=1 xt = 1.

(x i feasible and x j feasible =⇒) x feasible.
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A Rudimentary Approximation of Pareto optimal
portfolios in MVCC problem

Data: Beasley 31 asset portfolio problem published in
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Source: Juszczuk P., Kaliszewski I., Miroforidis J., Podkopaev D., Expected mean
return – standard deviation efficient frontier approximation with low cardinality
portfolios in the presence of the risk-free assets. International Transactions of
Operational Research, 30, 2395-2414, 2023.
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A Rudimentary Approximation of Pareto optimal
portfolios in MVCC problem

Source: Juszczuk P. et al., Expected mean return . . . .
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A Rudimentary Approximation of Pareto optimal
portfolios in MVCC problem

Source: Juszczuk P. et al., Expected mean return . . . .
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A Rudimentary Approximation of Pareto optimal
portfolios in MVCC problem

Approximation errors:

Source: Juszczuk P. et al., Expected mean return . . . .
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A Rudimentary Approximation of Pareto optimal
portfolios in MVCC problem

Portfolio cardinalities:

Source: Juszczuk P. et al., Expected mean return . . . .
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A Rudimentary Approximation of Pareto optimal
portfolios in MVCC problem
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Approach III – Exact and heuristic optimization
hybrides

Combining exact optimization methods with heuristics

– the case of Intensity Modulated Radiotherapy.
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Intensity Modulated Radiotherapy (IMRT)
1 Kill malicious cells (tumor) by irradiation.

2 Protect surrounding organs.

Source: Author’s photo, University Hospital Torrecardenas, Almeria, Spain.
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Intensity Modulated Radiotherapy (IMRT)

Source: Author’s photo, Maria Sklodowska-Curie National Research Institute of
Oncology, Warsaw, Poland. 24 / 50



Intensity Modulated Radiotherapy (IMRT)

Source: Author’s photo, Maria Sklodowska-Curie National Research Institute of
Oncology, Warsaw, Poland. 25 / 50



IMRT

Source: Varian Medical Systems, https://www.youtube.com/watch?v=o2-5GyPTxLg.
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IMRT

Source: Varian Medical Systems, https://www.youtube.com/watch?v=o2-5GyPTxLg.
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IMRT
Physical model:

30265 beamlets (number of variables) interacting with 94647 voxels
(∼ number of constraints)

Optimization model:
3D voxels, beams, beamlets,

Physically motivated (statistical) constrains (max/avg radiation
doses),

Physically motivated (statistical) objective functions (uniform
malicious cells coverage),

Biologically motivated objective functions.

28 / 50



IMRT

Equivalent Uniform Dose (EUD) – biologically motivated objective
function (multiplicative form).

Unconstrained optimization: excellent uniform dose coverage,
violations of physical constraints.

Physically motivated optimization model: takes care of feasibility of
soft constraints:
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IMRT

Search space: Search space: X
parameters of EUD f.

Source: Moreno et al., IMRT planning . . . .
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IMRT
Optimization methods

For evolutionary optimization - MOEA/D algorithm (can be easily
replaced)

For the EUD optimization – two in-house implementations of the
Gradient Descent method:

1. on GPUS: CUDA C software for NVIDIA-based GPUs
2. on multicore computers: OpenMP C software for multicore

CPUs.
Multicore hardware of the High-Performance Cluster of the SAL

(Supercomputaćıon–Algoritmos) group, the University of Almeria,
Spain in two configurations:

– AMD EPYC 7302 (32 CPU cores), 512 GB of DDR4 RAM, and
two NVIDIA Tesla V100 (32 GB).

– two Intel Xeon E5-2620v3 (12 CPU cores), 64 GB of DDR3
RAM, and two NVIDIA Kepler K80 (12 GB).

These two implementations can be used interchangeably or even in
parallel to exploit all available resources.
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IMRT

Cooperating units

Department of Medicine Physics, The Maria Sklodowska-Curie
National Research Institute of Oncology, Warsaw. Poland.

Faculty of Electrical Engineering, Warsaw University of Technology,
Warsaw, Poland.

Computer Science Department, Supercomputing-Algorithms group,
University of Almeria, Almeria, Spain.

Systems Research Institute of the Polish Academy of Science,
Warsaw, Poland.
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Approach III – Exact and heuristic optimization
hybrides – IMRT
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THANK YOU!
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